机器人在社会中取得了相关性,越来越越来越关注关键任务。尽管如此,机器人安全性被低估了。机器人安全性是一种复杂的景观,通常需要一个跨纪的横向落后的横向学科视角。要解决此问题,我们介绍了机器人安全框架(RSF),一种方法,用于在机器人中执行系统安全评估。我们提出,调整和开发特定术语,并提供了在四个主要层次(物理,网络,固件和应用程序)之后实现整体安全评估的指南。我们认为现代机器人应视为同样相关的内部和外部沟通安全。最后,我们倡导“通过默默无闻的安全”。我们得出结论,机器人中的安全领域值得进一步的研究努力。
translated by 谷歌翻译
机器人中的网络安全是一种新兴的主题,它已经获得了显着的牵引力。研究人员最近展示了网络攻击对机器人的一些潜力和影响。这意味着安全相关的不良后果导致人为的伤害,死亡或导致显着的诚信损失明确克服了古典IT世界的隐私问题。在网络安全研究中,使用漏洞数据库是一种非常可靠的工具,可负责揭示软件产品中的漏洞,并提高供应商的意愿来解决这些问题。在本文中,我们争辩说,现有的漏洞数据库的信息密度不足,并且在机器人中的漏洞中显示了一些偏见的内容。本文介绍了机器人漏洞数据库(RVD),该目录,用于机器人中的错误,弱点和漏洞的负责披露。本文旨在描述RVD后面的设计和过程以及相关的披露政策。此外,作者目前已经包含在RVD中的初步选择漏洞,并呼吁机器人和安全社区,以促进消除机器人中的零天漏洞的贡献。
translated by 谷歌翻译
机器人的不安全状态是在舞台上。有关于主要机器人脆弱性及其不利后果的新兴担忧。但是,机器人和网络安全域之间仍有相当大的差距。为了填补这种差距,目前的技术报告提供了机器人CTF(RCTF),一个在线游乐场,用于从任何浏览器中挑战机器人安全性。我们描述了RCTF的架构,并提供了9个方案,黑客可以挑战不同机器人设置的安全性。我们的工作使安全研究人员提供给a)本地复制虚拟机器人方案,b)将网络设置改为模拟真实机器人目标。我们倡导机器人中的黑客动力安全,并通过开放采购我们的场景贡献。
translated by 谷歌翻译
This letter focuses on the task of Multi-Target Multi-Camera vehicle tracking. We propose to associate single-camera trajectories into multi-camera global trajectories by training a Graph Convolutional Network. Our approach simultaneously processes all cameras providing a global solution, and it is also robust to large cameras unsynchronizations. Furthermore, we design a new loss function to deal with class imbalance. Our proposal outperforms the related work showing better generalization and without requiring ad-hoc manual annotations or thresholds, unlike compared approaches.
translated by 谷歌翻译
为N($ ^ 4 $ s)+ o $ _呈现和定量测试了一种用于预测来自特定初始状态(状态为分布或STD)的产品状态分布的机器学习(ML)模型。 {2} $(x $ ^ 3 \ sigma _ {\ rm g} ^ { - } $)$ \ lightarrow $ no(x $ ^ 2 \ pi $)+ o($ ^ 3 $ p)反应。用于训练神经网络(NN)的参考数据集由用于$ \ SIM 2000 $初始条件的显式准古典轨迹(QCT)模拟确定的最终状态分布。总体而言,通过根均方平方差价量化的预测精度$(\ SIM 0.003)$和$ r ^ 2 $ $(\ SIM 0.99)$之间的参考QCT和STD模型的预测很高测试集和离网状态特定的初始条件和从反应性状态分布中汲取的初始条件,其特征在于通过平移,旋转和振动温度。与在相同的初始状态分布上评估的更粗糙的粒度分布 - 分布(DTD)模型相比,STD模型表明了在反应物制剂中的状态分辨率的额外益处具有相当的性能。从特定的初始状态开始,还导致更多样化的最终状态分布,需要更具表现力的神经网络与DTD相比。显式QCT模拟之间的直接比较,STD模型和广泛使用的Larsen-Borgnakke(LB)模型表明,STD模型是定量的,而LB模型最适合旋转分布$ P(J')$和失败振动分布$ p(v')$。因此,STD模型可以非常适合模拟非预测高速流,例如,使用直接仿真蒙特卡罗方法。
translated by 谷歌翻译
There is a dramatic shortage of skilled labor for modern vineyards. The Vinum project is developing a mobile robotic solution to autonomously navigate through vineyards for winter grapevine pruning. This necessitates an autonomous navigation stack for the robot pruning a vineyard. The Vinum project is using the quadruped robot HyQReal. This paper introduces an architecture for a quadruped robot to autonomously move through a vineyard by identifying and approaching grapevines for pruning. The higher level control is a state machine switching between searching for destination positions, autonomously navigating towards those locations, and stopping for the robot to complete a task. The destination points are determined by identifying grapevine trunks using instance segmentation from a Mask Region-Based Convolutional Neural Network (Mask-RCNN). These detections are sent through a filter to avoid redundancy and remove noisy detections. The combination of these features is the basis for the proposed architecture.
translated by 谷歌翻译
Ithaca is a Fuzzy Logic (FL) plugin for developing artificial intelligence systems within the Unity game engine. Its goal is to provide an intuitive and natural way to build advanced artificial intelligence systems, making the implementation of such a system faster and more affordable. The software is made up by a C\# framework and an Application Programming Interface (API) for writing inference systems, as well as a set of tools for graphic development and debugging. Additionally, a Fuzzy Control Language (FCL) parser is provided in order to import systems previously defined using this standard.
translated by 谷歌翻译
Quantum Machine Learning (QML) shows how it maintains certain significant advantages over machine learning methods. It now shows that hybrid quantum methods have great scope for deployment and optimisation, and hold promise for future industries. As a weakness, quantum computing does not have enough qubits to justify its potential. This topic of study gives us encouraging results in the improvement of quantum coding, being the data preprocessing an important point in this research we employ two dimensionality reduction techniques LDA and PCA applying them in a hybrid way Quantum Support Vector Classifier (QSVC) and Variational Quantum Classifier (VQC) in the classification of Diabetes.
translated by 谷歌翻译
Uncertainty quantification is crucial to inverse problems, as it could provide decision-makers with valuable information about the inversion results. For example, seismic inversion is a notoriously ill-posed inverse problem due to the band-limited and noisy nature of seismic data. It is therefore of paramount importance to quantify the uncertainties associated to the inversion process to ease the subsequent interpretation and decision making processes. Within this framework of reference, sampling from a target posterior provides a fundamental approach to quantifying the uncertainty in seismic inversion. However, selecting appropriate prior information in a probabilistic inversion is crucial, yet non-trivial, as it influences the ability of a sampling-based inference in providing geological realism in the posterior samples. To overcome such limitations, we present a regularized variational inference framework that performs posterior inference by implicitly regularizing the Kullback-Leibler divergence loss with a CNN-based denoiser by means of the Plug-and-Play methods. We call this new algorithm Plug-and-Play Stein Variational Gradient Descent (PnP-SVGD) and demonstrate its ability in producing high-resolution, trustworthy samples representative of the subsurface structures, which we argue could be used for post-inference tasks such as reservoir modelling and history matching. To validate the proposed method, numerical tests are performed on both synthetic and field post-stack seismic data.
translated by 谷歌翻译
Understanding 3D environments semantically is pivotal in autonomous driving applications where multiple computer vision tasks are involved. Multi-task models provide different types of outputs for a given scene, yielding a more holistic representation while keeping the computational cost low. We propose a multi-task model for panoptic segmentation and depth completion using RGB images and sparse depth maps. Our model successfully predicts fully dense depth maps and performs semantic segmentation, instance segmentation, and panoptic segmentation for every input frame. Extensive experiments were done on the Virtual KITTI 2 dataset and we demonstrate that our model solves multiple tasks, without a significant increase in computational cost, while keeping high accuracy performance. Code is available at https://github.com/juanb09111/PanDepth.git
translated by 谷歌翻译